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ABSTRACT 

We apply polynomial i n t e r p o l a t i o n  methods both t o  t h e  approximation of 

f u n c t i o n s  and t o  t h e  numerical  s o l u t i o n s  of hyperbol ic  and e l l i p t i c  p a r t i a l  

d i f f e r e n t i a l  equat ions .  We c o n s t r u c t  the d e r i v a t i v e  m a t r i x  f o r  a g e n e r a l  

sequence of t h e  c o l l o c a t i o n  p o i n t s .  The approximate d e r i v a t i v e  i s  then  found 

by a m a t r i x  times v e c t o r  mul t ip ly .  We explore  t h e  e f f e c t s  of s e v e r a l  f a c t o r s  

on t h e  performance of t h e s e  methods inc luding  t h e  e f f e c t  of d i f f e r e n t  

c o l l o c a t i o n  poin ts .  We a l s o  s tudy t h e  r e s o l u t i o n  of t h e  schemes f o r  bo th  

smooth f u n c t i o n s  and f u n c t i o n s  wi th  s t e e p  g r a d i e n t s  or d i s c o n t i n u i t i e s  i n  some 

d e r i v a t i v e .  We i n v e s t i g a t e  t h e  accuracy when t h e  g r a d i e n t s  occur  both near  

t h e  c e n t e r  of t h e  r e g i o n  and i n  t h e  v i c i n i t y  of t h e  boundary. The importance 

of t h e  a l i a s i n g  l i m i t  on t h e  r e s o l u t i o n  of t h e  approximation i s  i n v e s t i g a t e d  

i n  d e t a i l .  We a l s o  examine t h e  e f f e c t  of boundary t rea tment  on t h e  s t a b i l i t y  

and accuracy of t h e  scheme. 
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approximation both for a function and also for the numerical solution of 

differential equations. We shall only consider collocation methods, but most 

of the results shown also apply to Galerkin methods. We approximate the 

function, f(x), by a polynomial, p~(x), that interpolates f(x) at N + 1 

distinct points XO,...,XN. f’(x) is approximated by PN’(x> which is 

calculated analytically, In solving differential equations we use an approach 

similar to finite differences. Thus, all derivatives that appear are replaced 

by their pseudospectral approximation. The resultant system is solved in 

space or advanced in time for time dependent equations. Hence, for an 

explicit scheme, nonlinearities do not create any special difficulties. 

This approach is equivalent to expanding f(x) in a finite series of 

polynomials related to x0,...,xN. For a Galerkin method, the coefficients of 

this series are obtained from the infinite expansion. For a collocation 

method, the coefficients are obtained by demanding that the approximation 

interpolate the function at the collocation points. This requires O(N2) 

operations. For special sequencies of collocation points, e.g.,. Chebyshev 

methods, this can be accomplished by using FFT’s and only requires O(N1ogN) 

operations. Every collocation method has two interpretations: one in terms 

of the collocation points and one in terms of a series expansion. In the 

past, this has lead to some confusion. As an example we consider the case of 

a Chebyshev collocation method with x = cos(.rrj/N). From an approximation 

viewpoint, we know [ l l ,  15 - 181 that the maximum error for interpolation at 
j 

I 

1 the zeroes of TN(x) is within ( 4  + 2/.rrlogN) of the minimax error and 

I converges for all functions in C1. The bound for the error based on the 
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points xj, given above, is even smaller than this 1131. There also exist 

sharp estimates in Sobolev spaces 

error which is equi-oscillatory 

nearly equioscillatory. Indeed, 

guess in finding the zeros of 

minimax approximation. Thus, 

[ 3 ] .  Since the minimax approximation has an 

we expect the Chebyshev interpolant to be 

Remez suggests using these xj as a first 

f - PN in his algorithm for finding the 

we would expect that when used t o  solve 

differential equations that the error would be essentially uniform throughout 

the domain. 

On the other hand, viewed as a finite difference type scheme, one expects 

the scheme to be more accurate near the boundaries where the collocation 

points are clustered. At the center of the domain the distance between points 

is approximately n/2N while near the boundary the smallest distance 

between two points is approximately n2/2N2. Hence, the spacing at the 

center is about n/2 times coarser than an equivalent equally spaced 

mesh. Near the boundary the Chebyshev points are about 4N/n2 times finer 

than an equally spaced mesh. From this point of view, we expect the accuracy 

and resolving power of the scheme to be better near the boundaries. However, 

the bunching of points near the boundaries only serves to counter the tendency 

of polynomials to oscillate with large amplitude near the boundary. We shall 

also consider collocation based on uniformly spaced points. Since, we 

consider polynomial interpolation on the interval [ -1 ,1 ]  we get qualitatively 

U I I L ~ L ~ L I L  results than obtained by Fourier or  finite difference methods even 

for the same collocation points. In fact, we shall see that the boundaries 

exert a strong influence for this case similar to the interpolation based on 

Chebyshev nodes. 

>; cc--- _.. 

Connected with this, we shall examine the inf hence of boundary 

conditions on the accuracy and stability of pseudospectral methods. In 



general, global methods are more sensitive to the boundary treatment than 

local methods. We also consider the effect of the location of the collocation 

points on both the accuracy and stability of the scheme and its effect on the 

allowable time step for an explicit time integration algorithm. 

2. APPE0XI)IATION AND DIFFERENTIATION 

We assume that we are given N + distinct points xo < x1 < ... < xN. 
Given a function f(x) it is well known how to approximate f(x) by a 

polynomial PN(x) such that P (x.) = f(xj), j = O,...,N. We define a 

function ek(x) which is a polynomial of degree N and ek(xj) = cSjk. 

Explicitly, 

N J  

. N  
1 ek(x) = -  fl (x - xa) 
k a=O a 

N 
a = II (xk - xi). 

a=o 
a#k 

Then the approximating polynomial is given by, 

(2.lb) 

We next consider an approximation to the derivative of f(x). We 

construct this approximation by analytically differentiating (2.2). The value 

of the approximate derivative at the collocation points is a linear functional 

of the value of the function itself at the collocation points. Hence, given 
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. 
the N + 1 values f(xj) we can find the values PN (x) by a matrix 

multiplying the original vector (f(xo), . . . ,f(xN)). We denote this matrix 

by D = (djk). By construction, DP = PN is exact for all polynomials of 

degree N or less. In fact, an alternative way of characterizing D is by 

demanding that it give the analytic derivative for all such polynomials at 

the N + 1 collocation points. In particular, we shall explicitly 

construct D by demanding that, 

. 

. 
De (x.) = e (x ), 
k J  k j  

i.e., 

D () - k-th row = 

j,k = 0 ,..., N, 

Performing the matrix multiply, it is obvious that 

We next explicitly evaluate d in terms of the collocation points 

Taking the logarithm of ( 2 . 1 )  we have 
jk 

xj 
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N 

R =O 
R*k 

log(ek) = 1 log(x - Xk> - log(ak). 

Differentiating, we have 

In order to evaluate (2.5) at 

divided by zero expression. 

x = xj, j # k, we need to eliminate the zero 

We therefore, rewrite (2.5) as 

. N 
1 ek(x) = ek(x)/(x - xj) + ek(x) l/(x - xR>* 

R=O 
R#j ,k 

Since, ek(xj) = 0 for j i k we have that 

e (x.) = lim e (x>/(x - x.). 
J x+x k J 

j 

Using the definition of ek(x), (2.11, we have 

While the above formulas (2.5), ( 2 . 7 )  are computationally useable, it is 

sometimes preferable to express the formulas slightly differently. We, 

therefore, rederive these formulas using a slightly different notation. 

Define , 

N 
(x) = II (x - XR). 

R=O 'N+1 



-6- 

Then, 

. N N  

and so 

(2. lo) 

It can a lso  be verified that 

(2.11) 

j = k (2.12b) 

Given a it requires another 2N2 operations to find the off diagonal 

elements by (2.12a). It requires N2 operations to find all the diagonal 
j 

elements from (2.12b). Hence, it requires about 4N2 operatiens to construct 

the matrix D. We multiply the matrix D on the left by 

diag(l/al ,..., l/aN) and on the right by the matrix diag(al ,..., a ). 
Then D is similar to a matrix D1 where D1 is a sum of an antisymmetric 

matrix and a diagonal matrix. Since 

N 

is a polynomial of degree N - 1 ";1 



-7- 

cannot be zero at all the collocation points. Hence, the diagonal G l  

portion of D1 is nonzero. 

In many cases Xo = -1, XN = 1 and the other xj are zeros of some 

One can then polynomial QN-1 (XI Hence, 'N+1 

rewrite the formula for djk in terms of QN-~(x). For j, k f 0, N we 

reproduce the formulas of Tal-Ezer [2O]. 

QN-l(x) is a Jacobi polynomial associated with the weight function 

(1 - x)' (1 + x ) ~  then 

(XI = (x2 - l)QN-l (XI 

He further points out that if 

1 -  - - (a  + 1) - ( B  - 1) 
x + 1) x - 1)' 2( k k t k  t 2 (  1 x - x  (2.13) 

where the sum is over the roots of QN-l(x). This can then be used to 

simplify (2.12b). When the ends points x = -1 or x = 1 are included in 

the collocation points then these must be explicitly accounted for to find 

djk* 

For the standard Chebyshev collocation points, we have 

x = cos(aj/N) j = O,...,N. (2.14) 
j 

Note that this orders the points in reverse order from our usual assumption. 

In this case one can evaluate the derivative by using FFT's. This requires 

only NlogN operations rather than the N2 operations required by a matrix 

multiply. Computationally it is found that for N < 100 that the matrix 

multiply is faster than the FFT approach, see, e.g., [23]. The exact 

crossover point depends on the computer and the efficiency of the software for 

computing FFTs and matrix multiplies. The matrix multiply has the advantage 
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t h a t  i t  is more f l e x i b l e  and v e c t o r i z a b l e .  Thus, f o r  example, both t h e  

l o c a t i o n  and t h e  number of t he  c o l l o c a t i o n  p o i n t s  is  a r b i t r a r y .  I n  o rde r  t o  

use t h e  FFT approach, i t  i s  r equ i r ed  t h a t  t h e  c o l l o c a t i o n  p o i n t s  be r e l a t e d  t o  

t h e  Four ie r  c o l l o c a t i o n  p o i n t s ,  e.g., Chebyshev. Furthermore,  t he  t o t a l  

number of c o l l o c a t i o n  p o i n t s  needs t o  be f a c t o r i z a b l e  i n t o  powers of 2 and 3 

f o r  e f f i c i e n c y .  The e f f i c i e n c y  of t h e s e  f a c t o r s  depends on t h e  memory 

a l l o c a t i o n  scheme of t h e  computer. Other c o l l o c a t i o n  nodes than  (2.14) are 

considered i n  [ 3 ,  7 ,  131. The ma t r ix  D f o r  t h e  Chebyshev p o i n t s  (2.14) i s  

g iven  i n  [ 7 ] .  

I n  Appendix A ,  we cons ide r  t h e  problem when we have N c o l l o c a t i o n  nodes 

but  wish the  d e r i v a t i v e  ma t r ix  t o  be exac t  ( i n  least  squa res  sense )  f o r  M > N 

f u n c t i o n s  which need not be polynomials. 

3. PARTIAL DIFFERENTIAL EQUATION 

We consider i n  t h i s  study t h r e e  a p p l i c a t i o n s  of c o l l o c a t i o n  methods: (1 )  

approximation theo ry ,  (2 )  hyperbo l i c  equa t ions ,  and (3 )  e l l i p t i c  equa t ions .  

For approximation theory  we need only d i s c u s s  accuracy. We f i r s t  need some 

way t o  measure t h e  approximation e r r o r  t h a t  can be used on a computer. We 

cannot use t h e  e r r o r  a t  t h e  c o l l o c a t i o n  p o i n t s  s i n c e ,  by c o n s t r u c t i o n ,  t h i s  

e r r o r  i s  zero. I n s t e a d ,  w e  u se  

N’ .-% 

I l f  - PNllL = 1 WR[f(XR) - PN(XR)IL 
R=O 

f o r  some sequence of p o i n t s  x which are not  t h e  c o l l o c a t i o n  p o i n t s .  I n  

g e n e r a l ,  we s h a l l  choose N’ much l a r g e r  than  N ,  the number of c o l l o c a t i o n  
j 
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p o i n t s .  I f  t h e  o r i g i n a l  p o i n t s  are chosen as Chebyshev nodes,  then we aga in  

choose t h e  x as Chebyshev nodes based on t h i s  l a r g e r  number, N'. Because 

of t h i s  s e l e c t i o n  of nodes the  sum i n  ( 3 . 1 )  approximates t h e  Chebyshev 

P 

i n t e g r a l  norm, i .e. ,  

1 R = O , N  

' 2 11 = O , N  
and c = { 1 l T  where w = - - II ca. N 

When the  c o l l o c a t i o n  p o i n t s  are evenly spaced then  w e  s h a l l  choose t h e  nodes 

of t h e  i n t e g r a t i o n  formula t o  be a l s o  uniformly spaced. In t h i s  case 

2 1 

-1 
IIf - PN1I2 - - [ f ( x )  - PN(x) ]  dx ( 3 . 3 )  

1 1 where w = - - N '  

For gene ra l  c o l l o c a t i o n  p o i n t s  i t  is not c l e a r  how t o  choose the  weights  

i n  the  norm. An a l t e r n a t i v e  p o s s i b i l i t y  i s  t o  measure the  e r r o r  i n  some 

Sobolev norm. I n  t h i s  case, the  f i n i t e  sum can be based on the  o r i g i n a l  

c o l l o c a t i o n  p o i n t s  and the  norm i s  t h e  L2 norm of t h e  d e r i v a t i v e .  ' I n  t h i s  

s tudy  a l l  e r r o r s  w i l l  be g iven  by ( 3 . 2 )  r ega rd le s s  of the  d i s t r i b u t i o n  of t h e  

c o l l o c a t i o n  nodes. 

a W 

For hyperbol ic  problems we need t o  be concerned wi th  s t a b i l i t y  i n  

a d d i t i o n  t o  accuracy. We a l s o  s tudy t h e  in f luence  of t h e  boundary t r ea tmen t  

on both t h e  accuracy and s t a b i l i t y  of the method. For s i m p l i c i t y  w e  s h a l l  

on ly  cons ider  t he  model equa t ion  
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-1 < x <  1, t > 0. - -  ( 3 . 4 )  

If a(x) is positive at both boundaries then we need to impose a boundary 

condition at x = 1. If a(-1) is negative while a(1) is positive, then we 

impose boundary conditions at both ends. On the other hand if a(-1) is 

positive while a(1) is negative then no boundary conditions need be given. 

For spectral methods, it is important that this distinction be preserved at 

the approximation level. Thus, whenever analytic bo'undary conditions are not 

given the spectral technique will be used to advance the solution at the 

boundary. The given boundary conditions are always chosen so that we know the 

analytic solution. 

We will solve the differential equation ( 3 . 4 )  by a pseudo-spectral 

algorithm. Thus, we will consider the solution only at the collocation 

points. We then replace the derivative in ( 3 . 4 )  by a matrix multiply as 

described in section 2. We next multiply a(x) at each collocation point by 

the approximate derivative at that point. We now have a system of ordinary 

differential equations in time. To advance the solution in time we could use 

any ODE solver. In particular, we shall use a standard four stage fourth 

order Runge-Kutta formula. This formula has several advantages. First, since 

it is fourth order in time (for both linear and nonlinear problems), it is 

closer to the high spatial accuracy of the spectral method than a second order 

formula. Also, the region of stability includes a significant portion of the 

negative real half plane and so is appropriate for Chebyshev methods which 

have eigenvalues in the negative half plane. Finally, if we look along the 

imaginary axis it has a comparatively large stability region. An alternative 

method is to use a spectral method in time. However, it is difficult to 
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generalize such methods to nonlinear problems while Runge-Kutta methods extend 

trivially to nonlinear problems. 

Since this is an explicit method (even though all the points are 

connected every time step) it is easy to impose boundary conditions after any 

stage of the algorithm. Whenever we wish we can let the pseudospectral method 

advance the solution at the boundary also. Since the method is explicit, 

there is a limit on the allowable At because of stability 

considerations. Heuristically, one can consider this stability limit as 

arising from two different considerations. One is based on the minimum 

spacing between mesh points, which usually occurs near the boundary. As noted 

above, this is heuristic since the domain of influence of each point is the 

entire interval. Alternatively, one can derive a stability limit by finding 

the spectral radius of a(x) times the derivative matrlx. This is also 

heuristic since the derivative matrix is not a normal matrix. For a(x) 

constant both methods indicate that At varies with 1/N2. The exact 

constant varies with the particular Runge-Kutta method used. For a two stage 

Runge-Kutta method, the stability limit is about three times the minimum 

spacing. For further details, the reader is referred to [5, 71 and ,the result 

sect ion. 

In Appendix B, we present the proof of the stability of Chebyshev 

collocation at points ( 2 . 1 4 )  for ut = uX. 

For our model elliptic problem, we shall choose a Poisson equation 

Au = f(x,y), -1 < x,y 5 1 - (3.5) 
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with u(x,y) prescribed on all four sides. A s  before f(x,y) will be chosen 

so that we know the analytic solution. 

We solve a time independent equation since it is easier to distinguish 

the resolving power of the scheme in different regions of the domain. For a 

time dependent equation, it can be difficult to distinguish local accuracy 

since inaccuracies propagate from one part of the domain to another. This is 

especially true for systems of hyperbolic equations with characteristics 

travelling in each direction. When the time independent equations is 

elliptic, then the solution is smooth. In particular, u(x,y) has at least 

two derivatives even if f(x,y) is only continuous. The smoother f(x,y) is 

the smoother a(x,y) will be, assuming the boundary conditions are 

sufficiently smooth. 

4. RESULTS 

In this section, we describe the computational results that illustrate 

many of the properties of pseudospectral methods. We begin with the 

approximaton of functions. Unless otherwise noted, the collocation points 

will be the Chebyshev nodes, (2.14). A s  is well known, interpolation at these 

points yields a maximum error which is not much worse (O(1ogN)) than the best 

possible minimax approximation [13 - 181. Nevertheless, we shall see that the 

quality of the approximation can vary greatly for different functions. we 

shall also see the effect of varying the collocation points. 

I n  Figure la, we display the pointwise error in approximating the 

function u(x) = sin(20x-m) where m varies between 0 and ~ / 2 .  Thus, 

u(x) varies between a sine and a cosine function. The top graph in Figure 1 
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is the error for an approximation to a sine wave. The phase changes in the 

following graphs and the bottom graph is the error for a cosine function. In 

this case we chose 28 Chebyshev collocation points. For m = 0, i.e., a sine 

function, the amplitude of the error is larger. This occurs since sin(x) is 

an odd function and hence the coefficient of is zero and so in essence we 

are only using 27 polynomials. This is verified in Figure lb by using N = 

29; for this case the error of the cosine function is larger. Nevertheless, 

this result is interesting for time dependent problem where the solution 

varies between a sine and cosine function. In addition, we also notice that 

for m = 0 the largest errors occur in the middle of the domain while for 

m = n/2 the larger errors are near the boundaries. Thus, for smooth 

functions the maximum error can occur anywhere in the domain. There is no 

need for the error to be smaller near the boundaries where the collocation 

points are bunched together. 

TN 

In Figure 2 we show the pointwise error in approximating the function 

x = x . We define u(x) = Ix - xoI 
a point as being half way between two nodes in the Chebyshev sense when 

which has a discontinuous derivative at 
0 

The top of the graph displays the error when the discontinuous derivative is 

located halfway between nodes while the center of the graph shows the error 

when the discontinuity in the derivative occurs at a node. The other graphs 

Thus, we see that when the show progressively other locations of 

discontinuous derivative occurs half-way between nodes in the Chebyshev sense, 

then the error has a sharp peak near the discontinuity but is close to zero 

'j 
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elsewhere. When t h e  d i s c o n t i n u i t y  occurs  near  a node then  t h e  e r r o r  i s  more 

sp read  ou t  and s e v e r a l  peaks may occur but t h e  maximum e r r o r  i s  decreased .  

G o t t l i e b  has  observed similar phenomena i n  o t h e r  problems. For o t h e r  v a l u e s  

of x the e r r o r  goes smoothly between t h e s e  extremes. 

I n  F igure  3a ,  w e  examine t h e  e f f e c t  of the a l i a s i n g  e r r o r  i n  t h e  

approximation of a func t ion .  G o t t l i e b  and Orszag [ 5 ]  show t h a t  one needs a t  

least  71 p o i n t s  p e r  wave l e n g t h  when us ing  a Ga le rk in  Chebyshev 

approximation. ‘In F igure  3,  we approximate sin(Mnx) wi th  N Chebyshev 

nodes i n  a pseudospec t ra l  approximation. We p l o t  t h e  L2 e r r o r ,  (3 .2) ,  as a 

f u n c t i o n  of the  number of p o i n t s  p a s t  t h e  a l i a s i n g  l i m i t .  A s  before  t h e  e r r o r  

begins to  decrease  e x p o n e n t i a l l y  when t h e r e  are 71 p o i n t s  pe r  wave 

l eng th .  We f u r t h e r  see t h a t  i n  o r d e r  t o  reach a f i x e d  e r r o r  t h e  number of 

c o l l o c a t i o n  p o i n t s ,  N ,  should vary (approximate ly)  as t h e  a l i a s i n g  l i m i t  

p l u s  Computationally,  i t  is  hard t o  f i n d  t h e  exac t  exponent,  but i t  

seems t o  be between 0.3 and 1/3. I n  F igure  3b, we see t h a t  f o r  f ( x )  = 

tanh(mx) t h e r e  i s  no sudden a l i a s i n g  l i m i t .  Ra ther  t h e r e  is  a g radua l  

r educ t ion  i n  t h e  e r r o r  as N i nc reases .  

For a Four i e r  method, i t  can be shown t h a t  one only needs two p o i n t s  pe r  

wave length  r a t h e r  t han  71 p o i n t s  pe r  wave length .  It might be s p e c u l a t e d  

t h a t  t h i s  i s  due t o  t h e  l a r g e r  spac ing  of t h e  Chebyshev method nea r  t h e  middle 

of t h e  domain. I n  f a c t ,  a sympto t i ca l ly ,  t h e  l a r g e s t  spac ing  between Chebyshev 

node is exac t ly  n/2 times as l a r g e  as f o r  F o u r i e r  nodes. I n  F igu r s  4 ,  we 

cons ide r  t he  same case  as i n  F igure  3,  but where t h e  c o l l o c a t i o n  p o i n t s  are 

evenly  spaced. One sees t h a t  one aga in  need about n p o i n t s  per  wavelength 

be fo re  exponent ia l  accuracy occurs  even though t h e  spac ing  is  t h e  same as f o r  

t h e  Four ie r  method. There i s  a theorem t h a t  i n t e r p o l a t i o n  based on uni formly  



-15- 

spaced p o i n t s  converges f o r  a n a l y t i c  func t ions .  Never the less ,  we see i n  

F i g u r e  4 t h a t  t h e  approximation begins t o  d iverge  i f  N is  s u f f i c i e n t l y  l a r g e  

wi th  r e s p e c t  t o  M. The c a l c u l a t i o n s  f o r  t h e s e  case were c a r r i e d  out  on a 

CRAY computer which has  about 15 s i g n i f i c a n t  f i g u r e s .  Using double p r e c i s i o n  

(about  30 s i g n i f i c a n t  d i g i t s )  one s t a b i l i z e s  t h e  procedure u n t i l  l a r g e r  N 

are reached a t  which po in t  t he  approximation a g a i n  d ive rges .  Hence, even 

though t h e  f u n c t i o n  is  a n a l y t i c  neve r the l e s s  roundoff e r r o r s  e v e n t u a l l y  

contaminate t h e  approximation. Hence, c o l l o c a t i o n  based on uniformly spaced 

node is  r i s k y  even f o r  a n a l y t i c  f u n c t i o n s  because of t h e  g r e a t  s e n s i t i v i t y  of 

t h e s e  c o l l o c a t i o n  methods t o  any n o i s e  l eve l .  

I n  F igure  5a ,  w e  s tudy  t h e  r e so lv ing  power of Chebyshev methods when 

t h e r e  are sha rp  g r a d i e n t s .  It i s  o f t e n  s t a t e d ,  t h a t  Chebyshev methods are 

i d e a l  f o r  boundary l a y e r  flows s i n c e  they n a t u r a l l y  bunch p o i n t s  i n  t h e  

boundary l aye r .  I n  F igure  5a,  w e  p lo t  t h e  L2 e r r o r  when we are 

approximating t h e  f u n c t i o n  u(x)  = tanh(M(x - x o ) ) ,  f o r  M = 8,  32, 128, 512, 

and 2048 and N = 31. A s  M i n c r e a s e s  the g r a d i e n t  becomes steeper and i n  

t h e  l i m i t  approaches a Heaviside func t ion .  Furthermore,  t anh (x )  i s  a l s o  a 

s o l u t i o n  t o  Burger's equa t ion  and so appropr i a t e  t o  model boundary layers.  We 

see t h a t ,  indeed ,  f o r  moderate va lues  of M t h e  accuracy is g r e a t e r  when t h e  

g r a d i e n t  occurs  c l o s e r  t o  the  boundary. Thus, g iven  a moderate s l o p e  a 

Chebyshev c o l l o c a t i o n  method "sees" the  g rad ien t  b e t t e r  i f  i t  is  near  t h e  edge 

of t h e  domain. Thus i t  may be advantageous t o  cons ide r  multidomain approaches 

[ 9 ,  101. However, when t h e  s l o p e  becomes too l a r g e  so  t h a t  i t  is  not r e so lved  

by t h e  c o l l o c a t i o n  p o i n t s ,  then  t h e  errm i s  equa l ly  l a r g e  everywhere. I n  

p a r t i c u l a r ,  a t r u e  d i s c o n t i n u i t y ,  e.g., a shock, i s  not  reso lved  any b e t t e r  

n e a r  t h e  boundary then  i t  is  i n  t h e  middle of t h e  domain. 
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I n  the  previous case i t  w a s  implied t h a t  t h e  Chebyshev method r e s o l v e s  

g r a d i e n t s  b e t t e r  near t h e  boundary because t h e  nodes are closer t o g e t h e r  n e a r  

t h e  edge. To check t h i s  hypothes is ,  we p l o t  t h e  same case i n  F igure  5b where 

now t h e  c o l l o c a t i o n  is based on uniformly spaced p o i n t s .  We cons ider  t h e  same 

case i n  Figure 5a but now choose M = 2 ,  4 ,  8,  16, 32. We choose lower v a l u e s  

of M then before  s i n c e  t h e  approximation based on evenly spaced p o i n t s  does 

no t  converge when t h e  g r a d i e n t  i s  too  l a r g e .  For t h e  same M t h e  e r r o r s  are 

much l a r g e r  f o r  t h e  uniformly spaced nodes than  Chebyshev spaced nodes. 

Nevertheless ,  the e r r o r s  are much smaller when t h e  g r a d i e n t s  occur  near  t h e  

boundary. Thus, g r a d i e n t s  i n  t h e  "boundary layer ' '  are b e t t e r  reso lved  than  i n  

t h e  cen te r  of t h e  domain even though w e  are us ing  i n t e r p o l a t i o n  based on 

uniformly spaced poin ts .  I n  f a c t ,  t h e  r a t i o  of t h e  L2 e r r o r  when t h e  

g r a d i e n t  is a t  t h e  c e n t e r  t o  t h e  e r r o r  when t h e  g r a d i e n t  i s  near  t h e  edge 

i s  even l a r g e r  f o r  uniformly spaced nodes than  f o r  a Chebyshev d i s t r i b u t i o n  of 

L2 

nodes. In  both cases, we used t h e  Chebyshev norm ( 3 . 2 ) .  However, t h e  r e s u l t s  

do n o t  depend on t h e  d e t a i l s  of t h e  norm. 

I n  order  t o  e x p l a i n  t h i s  phenomenon we examine t h e  s i n g u l a r i t y  of t h e  

f u n c t i o n  i n  t h e  complex plane.  To s i m p l i f y  t h e  d i s c u s s i o n  we s h a l l  cons ider  

t h e  e a s i e r  ca se  of an expansion of a f u n c t i o n  i n  Chebyshev polynomials.  I n  

t h i s  case i t  is  known [14] t h a t  t h e  approximation converges i n  t h e  l a r g e s t  

e l l i p s e  with f o c i  a t  +1 and -1 t h a t  does not  c o n t a i n  any s i n g u l a r i t i e s .  

The equat ion of an e l l i p s e  with f o c i  a t  f l  i s  

where R > 2 measures t h e  s i z e  of t h e  e l l i p s e .  L e t ,  r = R + . 
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Then r i s  t h e  sum of t h e  semi-major and semi-minor axes.  It i s  known 

[12 ,  161 t h a t  t h e  convergence rate of the scheme i s  bounded by r . Hence, -N 
1 
I as R i n c r e a s e s  t h e  approximation converges f a s t e r .  R is  determined by 

- -  
t h e  c l o s e s t  s i n g u l a r i t y .  Suppose t h a t  t h i s  s i n g u l a r i t y  occurs a t  x,  y ,  I t hen  

I 

2 -2 -2 2 -2 R = 2(x y + 1 + / ( G 2  + y2 - 1) + 4y ). 

Thus, as m i  - - 
For f ( x )  = tanh(M(x - xo) )  we have t h a t  x = x and y = 2M . 
xo v a r i e s ,  y i s  f i x e d  whi le  x changes. It is e a s i l y  shown t h a t  

a 2 - (R ) > 0. Thus, f o r  f i x e d  y ,  R is  a minimum a t  x = 0 and 

R i n c r e a s e s  as 1x1 = Ixol inc reases .  Hence, as xo approaches t h e  

boundar ies ,  f l ,  t h e  rate of convergence inc reases .  Also, as M i n c r e a s e s ,  

0 - - 

- - 
-2 ax 

- 
i.e., t h e  f u n c t i o n  has  a l a r g e r  g r a d i e n t ,  then  y dec reases  and R 

dec reases  and s o  t h e  r a t e  of convergence dec reases .  For  i n t e r p o l a t i o n  

approximat ions ,  both a t  Chebyshev and uniformly spaced p o i n t s ,  a s imilar  

phenomenon occurs  but  t h e  q u a n t i t a t i v e  a n a l y s i s  i s  more complex [12].  

For uniformly spaced c o l l o c a t i o n  poin ts  i n  [ 0 , 1 ]  , t h e  el1,ipses are 

r ep laced  by t h e  curves  u (x ,y )  = cons tan t  where 

Y. 
2 2 .  u ( x , y >  = 1 - x l n m  - ( 1  - x ) l n  (1 + y a r c t a n  

x - x  - y  

By examining graphs of t h i s  curve [ l l ,  p. 2491 one sees t h a t  having t h e  f i r s t  

moves s i n g u l a r i t y  a t  x + iy increases t h e  s i z e  of t h e  reg ion  as x 

toward t h e  boundaries.  A s  befo re ,  t h i s  i nc reases  t h e  rate of convergence. 

0 0 
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I n  Figure 6 ,  w e  cons ide r  t h e  same case as Figure  5a f o r  t h e  f u n c t i o n  

f ( x )  = tanh[Q(x - x,)]. Here, Q i s  a f u n c t i o n  of M and xo, s p e c i f i c a l l y  

M = 2 ,  4 ,  8 ,  15, 32. ML + 1 

='I1 + M2(1 - xo) ' 

A t  t h e  cen te r ,  xo = 0 ,  
2 

M I T  xo 1 and Q 21. - 2 -  

independent of xo. 

be u s e f u l  [2 ,  81. 

Q = - - 3 while nea r  t he  edge 

With t h i s  s c a l i n g  t h e  L2 e r r o r  i s  e s s e n t i a l l y  

This  i n d i c a t e s  t h a t  an adap t ive  c o l l o c a t i o n  method could 

I n  order  t o  f u r t h e r  i n v e s t i g a t e  t h e  r e s o l v i n g  power of t h e  schemes, w e  

r epea t  the experiment of F igure  5 but f o r  a f u n c t i o n  t h a t  is not  a n a l y t i c .  I n  

t h i s  ca se ,  our prev ious  a n a l y s i s  is no longe r  v a l i d .  We choose 

x,,). Hence, f ( x )  = -1 when x < x - - f ( x )  = +1 
0 M '  

where rl = M(x - 
1 when x > xo + - M 

h a s  two continuous d e r i v a t i v e s ,  but t h e  t h i r d  d e r i v a t i v e  is  d icont inuous  a t  

x = x f - . Thus, as be fo re ,  xo denotes  t h e  c e n t e r  of t h e  "jump" and t h e  

gradient becomes l a r g e r  as M i n c r e a s e s .  I n  F igure  7a, we p l o t  the L2 

e r r o r  f o r  Chebyshev c o l l o c a t i o n  w i t h  31 nodes. A s  xo goes toward the 

boundary, t h e r e  i s  a small decrease  i n  t h e  e r r o r ,  bu t  not as pronounced i n  

F igu re  5a. Even more s u r p r i s i n g  is  t h e  f a c t  t h a t  t h e  dec rease  i n  e r r o r  i s  

g r e a t e r  for M = 32 than  f o r  M = 2. Thus, i n  c o n t r a s t  t o  F igure  5a ,  t h e r e  

and is a q u i n t i c  polynomial i n  between. Furthermore,  f ( x )  

1 
O M  
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is  no longer  a sha rp  dec rease  f o r  smoother f u n c t i o n s  as xo approaches 1 .  

When us ing  uniformly spaced p o i n t s  t h e  abso lu te  e r r o r  i s  l a r g e r  t han  when 

u s i n g  Chebyshev po in t s .  However, now the re  i s  a l a r g e  decrease  i n  t h e  e r r o r  

as xo approaches t h e  boundary. We compare t h e  case M = 16; f o r  Chebyshev 

c o l l o c a t i o n  t h e  e r r o r  dec rease  by about 2 o r d e r s  of magnitude as xo v a r i e s  

from t h e  c e n t e r  t o  t h e  edge. For uniformly spaced p o i n t s  t h e  e r r o r  dec reases  

by about 6 o r d e r s  of magnitude. This i s  d e s p i t e  t h e  f a c t  t h a t  t h e  Chebyshev 

c o l l o c a t i o n  method bunches t h e  p o i n t s  near t h e  edge. W e  a l s o  n o t e  t h a t  

no th ing  s p e c i a l  happens when xo is s u f f i c i e n t l y  c l o s e  t o  t h e  boundary t h a t  

t h e  d i scon t inuous  t h i r d  d e r i v a t i v e  a t  is  no longer  i n  t h e  domain. xo + ii 
I n  F igure  8a, we s tudy  a similar phenomena. I n  t h i s  case, we s tudy  t h e  

L2 e r r o r  as we vary t h e  s t r e n g t h  of t h e  s i n g u l a r i t y .  We cons ide r  t h e  

f u n c t i o n  u(x)  = H(x - xo) * ( x  - x ~ ) ~ ,  where H(x) is t h e  Heavis ide  

func t ion .  Thus u (x )  has  a d iscont inuous  M-th d e r i v a t i v e .  A s  expec ted ,  

based on previous  cases, w e  see t h a t  when t h e  h igh  o r d e r  d e r i v a t i v e s  are 

d i scon t inuous  t h a t  t h e  Chebyshev c o l l o c a t i o n  method r e s o l v e s  the  f u n c t i o n s  

b e s t  when the  d i s c o n t i n u i t y  i s  near t h e  boundary. However, when low o r d e r  

d e r i v a t i v e s  are d i scon t inuous  than  t h e  d i f f e r e n t i a l  between t h e  edge and t h e  

c e n t e r  decreases .  For a s t e p  func t ion ,  M = 0 ,  t h e  e r r o r  o s c i l l a t e s  wi th  e q u a l  

ampl i tude  throughout the domain. As x approaches t h e  boundary only t h e  

frequency of t h e  o s c i l l a t i o n  changes. I n  F igure  8b, w e  aga in  see t h a t  t h e  

same q u a l i t a t i v e  p i c t u r e  occurs  when t h e  c o l l o c a t i o n  is based on uniformly 

spaced po in t s .  We a l s o  see t h a t  g l o b a l  c o l l o c a t i o n  based on uniformly spaced 

p o i n t s  is not convergent when t h e  f u n c t i o n  is not  smooth. This d ivergence  is 

ampl i f i ed  i f  t h e  d i s c o n t i n u i t y  occurs  nea r  the c e n t e r  of t h e  domain. I n  t h i s  

c a s e ,  t h e  d ivergence  i s  no longer  caused by roundoff e r r o r .  Rather i t  a l r e a d y  
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occurs  a t  moderate va lues  of N and begins  a t  l a r g e r  e r r o r  l e v e l s .  For f ( x )  

= 1x1 i t  can be proved [161 t h a t  c o l l o c a t i o n  based on uniformly spaced nodes 

converges only f o r  t h e  p o i n t s  x = 0,  +1, -1. 

I n  o rde r  t o  f u r t h e r  s tudy  the  r e s o l v i n g  power of t he  g l o b a l  schemes nea r  

t h e  boundary, we cons ide r  t h e  func t ion  

x < l  

x > l  
f ( x )  = {I: 

- 

We p l o t  t h e  poin twise  e r r o r  i n  F igure  9a f o r  both Chebyshev nodes and f o r  

uniformly spaced notes .  For uniformly spaced nodes, t h e  e r r o r  i s  very s m a l l  

i n  t h e  i n t e r i o r ,  ( s e e  F igure  9b f o r  a l o g a r i t h m i c a l l y  sca l ed  p l o t )  bu t  i s  very  

From Figure  9b we see t h a t  t h e  l a r g e  near,  i.e., w i t h i n  O(z), x = 1. 

e r r o r  i s  l a r g e r  nea r  x = -1 than  i n  t h e  c e n t e r .  For t h e  Chebyshev nodes,  

1 

t h e  error i s  more g l o b a l ,  but t h e  l a r g e  e r r o r  near t h e  boundary i s  confined t o  

an  i n t e r v a l  of s i z e  O(?). 1 

N 
We next cons ide r  t h e  p a r t i a l  d i f f e r e n t i a l  equa t ion  

-1 - -  < x < 1, t > 0 u = u  
t X 

U(X,O) = f ( x )  u ( 1 , t )  = g ( t ) .  

( 4 . 2 )  

We f i r s t  d i s c r e t i z e  ( 4 . 2 )  i n  space us ing  

v = D v  
t ( 4 . 3 )  
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where D is the matrix derivative based on the collocation points XO,...XN 

and v is the vector of the dependent function evaluated at the collocation 

nodes. We shall further assume that the point x = 1 is a collocation 

point. A s  before D is explicitly given by (2.12). To advance ( 4 . 3 )  in time 

we use a four-stage fourth order Runge-Kutta formula. 

In studying (4.2) we shall be interested in both accuracy and stability 

properties of the algorithm. For stability we need to distinguish between 

space stability and time stability [ 6 ] .  By space stability, we mean the 

behavior of the approximation v as the number of modes N increases when 

0 - -  < t < T. By time stability we mean the behavior of v as time increases, 

for fixed N. Since, D can be diagonalized the scheme is time stable 

whenever all the eigenvalues of At-D lie in the stability region of the 

Runge-Kutta scheme. This does not necessarily prove space stability since the 

norm of the matrix that diagonalizes D depends itself on N. Obviously, the 

spectral radius of D and also the maximum allowable time step depends on the 

implementation of the boundary conditions. 

Since the temporal accuracy is lower than the spatial accuracy the 

maximum At allowed by stability considerations will not yield very 

accurate approximations. However, by decreasing the time step we can increase 

the accuracy of the solution. This general technique works equally well for 

nonlinear problems. When the model equation ( 4 . 1 )  is replaced by a more 

realistic system with several wave speeds then the stability limit will also 

give approximations that are accurate [ l ] .  Also, when one is only interested 

in the steady state then frequently the time step can be chosen by stability 

considerations alone. An alternative, which will not be persued in this 

study, is to use spectral methods also in the time domain, e.g., [ 4 ,  211. 
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I n  o r d e r  t o  measure t h e  accuracy of t h e  approximation, we s h a l l  choose 

u ( x , t )  = f ( x  - t )  f o r  some f ( x ) .  Hence, t h e  approximation can be compared 

pointwise wi th  t h e  a n a l y t i c  s o l u t i o n .  The boundary d a t a  i s  then  given by 

g ( t )  = f ( 1  - t). W e  s h a l l  measure t h e  e r r o r  e i t h e r  po in twise  o r  else i n  a 

weighted L2 norm given by ( 3 . 2 ) .  

We f i r s t  s tudy t h e  e f f e c t  of t h e  boundary t rea tment  on t h e  s t a b i l i t y  and 

accuracy of ( 4 . 3 ) .  One proper ty  of g l o b a l  methods i s  t h a t  t h e  approximation 

i s  au tomat ica l ly  updated a t  a l l  c o l l o c a t i o n  p o i n t s  i n c l u d i n g  t h e  boundaries.  

Thus, i f  one wished, t h e  scheme could be advanced without  e v e r  imposing t h e  

g i v e n  boundary da ta ;  but  t h i s  would be an u n s t a b l e  scheme. For a m u l t i s t a g e  

t i m e  scheme, one can impose t h e  boundary c o n d i t i o n s  a t  any s t a g e  one wishes.  

We now consider  (4.1) wi th  f ( x )  = s i n ( a x ) .  I n  Figure loa,  we impose t h e  

g i v e n  boundary c o n d i t i o n  a f t e r  each s t a g e  while  i n  Figure 10b we impose t h e  

boundary c o n d i t i o n  only a f t e r  t h e  f o u r t h  s t a g e .  We d e f i n e  t h e  Courant number, 

CFL, by 

2 CFL = N A t .  

I n  both p l o t s ,  10a and lob,  we d i s p l a y  t h e  e r r o r  f o r  s e v e r a l  va lues  of t h e  

Courant number. We see t h a t  imposing boundary c o n d i t i o n s  a f t e r  each s t a g e  

a l lows  a l a r g e r  maximum s t a b l e  CFL number. For t h e  f o u r  s t a g e  scheme, t h e  

maximum CFL i s  about 35. However, f o r  smaller time s t e p s  t h e  e r r o r  i s  

s l i g h t l y  l a r g e r  than  when one imposes t h e  boundary c o n d i t i o n  only a t  the erid 

of a l l  the s t a g e s .  One also sees t h a t  f o r  a given e r r o r  l e v e l  t h a t  t h e  

approximate s o l u t i o n  i s  e s s e n t i a l l y  independent of t h e  t i m e  s t e p  below some 

c r i t i c a l  t i m e  s t e p .  A s  one demands more accuracy t h e  necessary CFL number 

decreases .  For a smooth s o l u t i o n ,  t h e  necessary  t i m e  s t e p  depends 



exponentially on N. The largest stable At do not give accurate solution 

at any error level. We also found that the error grows in time if the 

solution is not sufficiently resolved in either space or time. There was no 

growth when N was large enough and At was sufficiently small. 

In Figures lla and llb, we again plot the L' error for approximating 

(4.2) with f(x) = sin(x) as N increases and for a selection of CFL 

numbers. In this plot, we choose a different sequence of collocation points 

given by 

x = -(I - a >  cos ZL + a(-1 + - 2j) j = o,...,N j N N (4.4) 

so ~0 = -1 and xN = 1. These points are a linear combination of Chebyshev 

nodes and uniformly spaced nodes. Letting 

71 (1 - cos,) 2 
N 

a =  - -  

Then 

1 - -  4N 

when f3 = 0(1), 1 
= 

and we find that 

new spacing a t  edge ' = Chebyshev spacing at edge 

(4.5) 
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We solve (4.1) by using the derivative matrix (2.12). We do not use a mapping 

to Chebyshev collocation nodes. In Figure lla, we choose j3 = 2 , i.e., a 

spacing at the edge twice as coarse as the usual Chebyshev spacing. We see 

that in this case we cannot increase the allowable time step beyond the 

stability condition for the Chebyshev nodes. Hence, the stability condition 

is not directly related to the minimum spacing. In Figure llb, we display the 

error for j3 =1/2 , i.e., a spacing twice as small as the Chebyshev spacing 

near the wall. In this case the largest stable time step is reduced compared 

with the Chebyshev nodes. In this example, we have considered constant 

coefficients. For a problem with variable coefficients it is possible that 

coarsening the mesh near the boundary will allow a larger time step. This is 

because the coarser mesh near the boundary may just counteract the behavior of 

the variable coefficients near the boundary. 

In Figure 12, we consider uniformly spaced nodes, i.e., a = 0. From 

Figure 12, we see that even for small CFL levels that the error first 

decreases but then increases as N gets larger. These calculations were 

carried out in double precision on the CR4Y. Nevertheless, it is difficult to 

distinguish between a mathematical instability and an instability caused by 

rounding errors on the computer. 

In Figure 13, we consider the differential equation 

u = -xu - l < x < l  - -  t X’ 

u(x,O) = f(x). 

For this differential equation, we do not specify boundary conditions at 

either end of the domain. The solution is given by u(x,t) = f(xe-t> and 
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so u(x,t) decays to a constant value. It is easy to verify that the 

eigenfunctions of the spatial operator are with corresponding 

eigenvalue X = -j, j = O,...,N (see also [5]). Hence, the stability 

condition is At 5 ;  where C depends on the details of the explicit time 

integration scheme. Since u(x,t) is almost constant for large time the 

error levels become very small. In figure 13, we plot the L2 error at 

time t = 10, with f (x )  = sinnx. For the fourth order Runge-Kutta scheme 

C - 2.8 is the stability limit. In Figure 13a, we use double precision on 

the cray (about 30 significant figures) while in Figure 13b we only use five 

significant figures. We define the CFL number for this problem as 

vs(x) = xj 

j 

CFL = NAt. 

Comparing 13a with 13b, we note that CFL = 2 is stable using double 

precision but is unstable using only five significant digits. The ef€ect of 

roundoff on stability is studied in [241. For this case the effects of 

roundoff are important only for time steps very close to the stability 

limit. The effect of roundoff is more pronounced when At - 1-/N than 

when At - 1/N . 2 

We further see from this case that the maximum allowable time step is not 

necessarily related to the minimum spacing in the grid. In this case, the 

fact that no boundary conditions were specified allowed At to vary with 

1/N rather than the usual 1/N2, We also saw a similar phenomenon where 

coarsening the mesh near the boundary did not allow a larger maximum time 

step. A similar conclusion was found by Tal-Ezer [22]  for the Legendre-Tau 

method which has a time step limitation that depends on 1/N even though the 



-26- 

minimum g r i d  spac ing  i s  Thus, t o  f i n d  t h e  s t a b i l i t y  l i m i t ,  one must 

ana lyze  the  d e r i v a t i v e  ma t r ix  a p p r o p r i a t e  €o r  each case r a t h e r  t han  us ing  a 

h e u r i s t i c  approach based on t h e  spac ing  between c o l l o c a t i o n  nodes. 

1 / N 2 .  

We f i n a l l y  d i s c u s s  t h e  s o l u t i o n  t o  t h e  Poisson  equa t ion  (3.5). The r i g h t  

hand s i d e  and boundary c o n d i t i o n s  are chosen by dec id ing  a p r i o r i  on t h e  e x a c t  

s o l u t i o n .  W e  s o l v e  (3.5) by a Chebyshev c o l l o c a t i o n  method i n  each 

d i r e c t i o n .  The ma t r ix  equa t ion  t h a t  r e s u l t s  is  so lved  by a m u l t i g r i d  

technique  [25] .  

I n  Figure 14  we cons ide r  t h e  case where t h e  exac t  s o l u t i o n  i s  u (x ,y )  = 

sinrry tanh(M(x - x,)) .  Thus, t h e  s o l u t i o n  i s  smooth i n  y and has  a 

g r a d i e n t  i n  the  x d i r e c t i o n .  The sharpness  of t he  g r a d i e n t  and i t s  l o c a t i o n  

a r e  given by M and xo r e s p e c t i v e l y .  Hence, t h i s  models boundary l a y e r  

t y p e  behavior. A s  befo re  ( s e e  F igure  5a) when M i s  not  t o o  s m a l l  t hen  t h e  

approximation i s  more a c c u r a t e  when t h e  g r a d i e n t  occurs  nea r  t h e  boundary. 

For sharp g r a d i e n t s ,  i .e.,  M very  l a r g e ,  t h e  g r a d i e n t  is not r e so lved  by the  

mesh and t h e  Chebyshev L2 e r r o r  i s  approximately independent of t h e  p o s i t i o n  

of t h e  g rad ien t .  As shown by Figure  5b, t h i s  i nc reased  accuracy i n  t h e  

boundary l a y e r  i s  not only due t o  t h e  inc reased  number of c o l l o c a t i o n  p o i n t s  

i n  t h e  "boundary layer". Rather i t  is due t o  p r o p e r t i e s  of g l o b a l  

approximation techniques .  It is  of i n t e r e s t  t o  no te  t h a t  f o r  M = 1024, i .e.,  

a d i s c o n t i n u i t y ,  t h a t  t h e  e r r o r  is almost cons t an t .  However, fo r  M = 64 and 

256, i .e.,  a sha rp  g r a d i e n t ,  t h e r e  are peaks i n  t h e  e r r o r  as xu apprca thes  a 

c o l l o c a t i o n  node. 
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5. CONCLUSIONS 

We consider the properties of global collocation methods to problems in 

approximation theory and also partial differential equations. In particular, 

we study concepts that have been used by many authors without verification. 

In order to be able to study differential equations for a general 

sequence of collocation nodes we calculate the approximate derivative by a 

matrix times vector multiply. For Fourier or Chebyshev methods one could also 

use a FFT 151. the matrix multiply is 

faster than the FFT. For sufficiently large N the FFT is always faster 

since it grows as NlogN rather than The exact cross-over point between 

the two techniques is very machine dependent as well as software dependent. 

There obviously are differences between scalar, vector, and parallel 

computers. Nevertheless, for practical N used in most partial differential 

equation solvers the matrix multiply is not much slower than the FFT. Hence, 

we only use the matrix multiply technique due to its greater generality and 

flexibility. 

For a small number of nodes, N - N 6 4 ,  

N2. 

It follows from the results presented in Section 4 that a global 

collocation method must be distinguished from a local finite difference or 

finite element approximation. In particular, the greater density of points, 

for a Chebyshev collocation method, near the boundary does not give increased 

accuracy, for a smooth function, near the boundary. The extra density near 

the boundary is needed to counteract the tendency of polynomials to have large 

errors near the edges of the domain. 

Chebyshev collocation methods do have lower errors when sharp gradients 

are near the boundary than when they are in the center of the domain. Similar 

results occur when there is a discontinuity in some derivative. However, 



-28- 

qualitatively similar results are obtained using uniformly spaced nodes. 

Thus, the increased resolution near the boundary is due to the global nature 

of the approximation and not the bunching of collocation nodes. Of course, in 

terms of absolute error, it is preferable to use Chebyshev collocation rather 

than uniform collocation. This indicates that domain decomposition methods 

should be advantageous [9, 101 but not €or shocks. In fact, even in cases 

where collocation based on a uniform mesh should converge the actual 

interpolation process on a computer eventually diverges due to roundoff 

errors. These roundoff errors contaminate the results for relatively small 

N .  

As a further distinction between global and local techniques we consider 

the aliasing limit. For a Fourier (periodic) method we need 2 points per wave 

length t o  resolve a sine wave. For a Chebyshev method we need IT points 

per wavelength. The difference between 2 and 71 is not due to the 

different distribution of points in these techniques. Polynomial collocation 

based on uniformly spaced points again needs IT points per wavelength. 

Furthermore, for other functions, e.g., tanh x, one does not observe any sharp 

aliasing limit. Thus, one can not speak of number of points per wave length 

€or general functions on nonperiodic domains. 

An alternative to improving the accuracy of an approximation is to map 

the x domain [-1,1] onto another computational domain s ,  for simplicity 

---:- r 1 1 1  d t ; a ~ u  1 - 1 , ~ ~ .  The above conclusions do not extend to such mappings. First, a 

polynomial in s is no longer a polynomial in X. Hence, in the physical 

space x we are not considering polynomial collocation methods. In addition, 

the L2 norm in s-space corresponds to a weighted L2 norm in x-space. 

Hence, it is difficult to measure the effectiveness of such mappings. In 

practice [2] has shown that in some cases adaptive mesh mappings can be 

effective for spectral methods. 
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The results obtained for approximating solutions to elliptic partial 

differential equations seem to correspond t o  the results for the approximation 

problem. Again one can not interpret the properties of a Chebyshev 

collocation method in terms of finite difference properties. Such concepts as 

number of points in a local region are not meaningful. If one chooses another 

set of collocation points then there are two ways of implementing the 

method. One can map one set of points to the other and then use a Chebyshev 

method in the computational space. This introduces metrics into the 

equation. Alternatively, one can solve the equation in physical space using 

the general derivative matrix (2.12). We have not investigated the 

differences between these two approaches. 

For a time dependent partial differential equation, the study is more 

complicated. First, there is an accumulation of errors as time progresses. 

Thus, for example, for a stationary problem one can distinguish between the 

discontinuity being at a node or in between nodes. For a time dependent 

problem the discontinuity is moving and so all effects are combined. This is 

especially true for systems with variable coefficients where there is coupling 

between all the components. 

Also, there is the question of stability in addition to accuracy. Thus, 

we have found that the implementation of boundary conditions influences both 

the maximum time step allowed and the accuracy. At times an implementation 

which increases the stability will decrease the accuracy. 

We also found that there is no direct correlation between the smallest 

distance in the mesh and the maximum allowable time step. Coarsening the mesh 

near the boundary does not allow a larger time step. This again demonstrates 

the fallacy of describing a global method in terms of local behavior. As is 
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well known, for wave equation type problems one should not choose the maximum 

allowable time step allowed by stability. Since we use a fourth order 

accurate method in time but a spectrally accurate method in space one should 

choose a smaller time step to compensate. Thus to achieve time accuracy there 

is no need to increase the O(l/N2> time step restriction for hyperbolic 

equations. For stiff problems or if one is not interested in time accuracy 

then one may wish to exceed the stability restriction. Furthermore, for 

parabolic equations A t  - - O(l/N4) which is much too restrictive. As 

before, one can consider other sets of collocation points. Again using 

mappings or the derivative matrix based on these nodes give rise to different 

s cheme s . 
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APPENDIX A 

In Section 2, we saw that given the collocation points xO,...,xN and 

N + 1 functions uj(x) then the derivative matrix, D, is determined by 

demanding that D times give the exact derivative at 

the collocation points. Let D = (djk) and define the matrix U by ujk - 

uj (xk) j,k = O,...,N. Given the matrices D and U we denote the j-th 

Then each column of D is column of these matrices as dj and 

determined by the equation 

(@ (x,) , .. . ,@ (x~))~ 
- 

uj 

Ud = uc 
j j  

at all collocation points x k = O,...,N. k’ 

If we wish D to be exact for M > N + 1 functions, then in general there is 

no solution. Instead we can demand that D give the smallest L2 error over 

these M functions. Intuitively if D is almost exact for many functions, 

then it should be a good approximation t the derivative. ‘In particular, one 

may choose functions that are more appropriate to a given problem than 

polynomials. Choosing D to give the least sqares minimization is equivalent 

to demanding that 

UtUd = U T uc 
j j 

instead of ( A l ) .  It is easily to verify that 
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and 

We now define 

M 

(A3 

then 

Assuming det. U # 0 then the vk(t) are linearly independent. It also 

follows that D is exact for the N + 1 functions vk(x) at the collocation 

points. Hence, demanding least square minimization for ui(x), i = O,...,M 

is equivalent to demanding exactness for vi(x), i = O,...’N given in ( A 4 ) .  

We next extend this by letting M become infinite and replacing the sums 

by integrals. Thus, given the continuum of function ui(x) and demanding 

that D be the best least squares approximation to the derivative at the 

collocation points is equivalent to demanding that D be exact for the 

N + 1 functions 

m 
(A5 
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To demonstrate this, we consider a specific example. Let uk(x) be the 

functions sin(kx) and cos(kx) for 0 < k < NIT and choose N + 1 

we are always below uniformly spaced collocation points, 

the aliasing limit. It follows from (A5) that 

- -  
NIT Since k < 2 xj - 

NIT 
2 
- 

v (x.) = I [sin(ix.)sin(i\) + cos(ix.)cos(ix )]di J J k k J  0 
NIT 

sin < xk> 
j f k  

j = k  

These functions, vj(x) are known as SINC functions and have been used for 

interpolation formulae [19]. Demanding that D be exact for vj(x), j = 

O,...,N yields the derivative matrix 

d j k = I  O 
j = k  

which is an antisymmetric matrix. We also note that this matrix resembles the 

derivative matrix for the Chebyshev nodes [71. 
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APPENDIX B 

I n  t h i s  s e c t i o n ,  w e  p r e s e n t  t h e  proof t h a t  Chebyshev c o l l o c a t i o n  a t  t h e  

s t a n d a r d  Gauss-Lobatto p o i n t s  i s  s t a b l e  f o r  s o l v i n g  s c a l a r  hype rbo l i c  

equat ions .  This  r e s u l t  w a s  g iven  i n  [ 7 ]  without  proof.  

Consider t h e  c o l l o c a t i o n  p o i n t s  

x = cos $ , j = o,...,N. 
j 

L e t  u be t h e  s o l u t i o n  t o  

u = u  t X 
u ( 1 , t )  = 0 

u(x,O) = f ( x ) .  

I f  v is a N-th o rde r  polynomial which i s  found by c o l l o c a t i o n  a t  x j  (see 

[ 5 ] ,  [7]), then  v e x a c t l y  s o l v e s  t h e  modified equa t ion  

(1 + x ) T ~ ~ ~ ( T )  
, v ( 1 , t )  = 0 N v = v  + t X 

where 

and 
N 

We need the  fo l lowing  f a c t :  
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Le- : 

Proof:  - 
d 2 daN daN-l )  
- [ (2% - aN-l) 3 = 2(2aN - a N-1 ) ( 2  - d t  - - d t  C t  

comparing t h e  c o e f f i c i e n t  of TN-1 i n  (B3) w e  f i n d  t h a t  

daN -- - 2NaN + 2 - daN- 1 
d t  d t  

o r  

daN daN+l  2 - - - = -2NaN. d t  d t  

I n s e r t i n g  t h i s  i n t o  (B6)  g ives  the  lemma. With t h i s  l e m m a  we prove t h e  

fo l lowing  theorem. L e t  

j = O y N  i' 
Y 

j # 0,N 

then  

then  Theorem: L e t  v s o l v e  (A2.31, t hen  if - < B 5 5  ___ 
N - 3N-1 - 
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and s o  the s o l u t i o n  v i s  s t a b l e .  

n Proof: We mul t ip ly  (B3) by 5 (1 + X . ) ( l  - B x . ) v ( x j , t >  and sum Over 
J J 

j 
t h e  c o l l o c a t i o n  nodes. We then  have 

However, t he  last  t e r m  is ze ro  s i n c e  T'(x.1 = 0 a t  i n t e r i o r  p o i n t s ,  

1 + x j  = 0 a t  x j  = -1 and v ( x j )  = 0 a t  x j  = +l. Furthermore,  if 

N J  

"2N-3 f ( x )  = 1 b .T . (x )  
J J  

t hen  

By a lgeb ra ,  i t  can be v e r i f i e d  t h a t  t h e  2N-th Chebyshev c o e f f i c i e n t  ef 
n 

where as be fo re  ( 1  - B)Nai 2N- 1 
(1 + x)  ( 1  - Bx)vvX i s  bZN - - 2 - B(-)aNaN-l 

a j  are the Chebyshev c o e f f i c i e n t s  of v. Therefore ,  (B8) can be r e w r i t t e n  as 
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I n t e g r a t i n g  by parts and using the  f a c t  t ha t  v ( 1 , t )  = 0 we f i n d  t h a t  

Using t h e  lemma t h i s  i s  equiva len t  t o  

t 

d 
J J N- 1 

then  4 N 
I f  I3 5 5 ,  then t h e  i n t e g r a l  term is negat ive while  i f  B 3~-1 - 7 ,  
t h e  second term on t h e  r i g h t  hand s i d e  i s  a l s o  nega t ive .  Hence, when 
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4 
< 0 5 3N-1 - 

i s  proven. 

then the  r i g h t  hand s i d e  of (B11) i s  nega t ive  and the  theorem N - 

I f  we choose the  s p e c i a l  case B = - then  (B11) becomes 5 

1 + x . > ( l  - - 4 x . > v  2 (x. , t >  + E 'II (2aN - a l21 
d 

N- 1 J J  J 5 J  J 

71 2 2 2  v ( x , t ) d x  - lo(7N - 4 ) a N .  = - - - I  1 1 (1 - 2x1 

-1 ( 1  - x > m  
10 

A s  a c o r o l l a r y ,  t h i s  theorem i m p l i e s  t h a t  a l l  t he  e igenvalues  of 

t h e  l e f t  half  of the  complex plane.  

D l i e  i n  
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Figure la. Pseudospectral Chebyshev approximation to sin(20x - M), 
0 < M < % , with 28 nodes. 
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Figure lb. Pseudospectral Chebyshev approximation to 

with N = 29. sin(20x - MI, 0 < M < 5 , 
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Figure 2. The error for pseudospectral approximation to / x  - xoi , 0.05 

< xo < 0.05 with 29 nodes. The error is plotted as a 

function of x. 
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Figure 3a. Pseudospectral Chebyshev approximation to sin(M.rrx). The 

different graphs represent M = 2, 4 ,  8, 16 ,  and 32. The 

N - nM L2 error is plotted as a function of 

several N. 
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Figure 3b. Pseudospectral Chebyshev approximation to tanh(Mx) f o r  M = 

2, 8, 16, 32. We plot normalized L2 error as a function 

of N/M for several M. 
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N -I 
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l o * *  - 5  

F i g u r e  4 .  C o l l o c a t i o n  based on uniformly spaced p o i n t s  f o r  

sin(Mnx), M = 1 ,..., 5 ,  

f ( x )  = 

and nodes. 
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Figure Sa. Pseudospectral collocation with 31 nodes for f (x)  = 

tanh(M(x - xo)) with M = 8 ,  32 ,  512,  2048. xo varies 

between the center, xo = 0, and the edge, xo = 1 .  
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Figure 5b. Same case as Figure  5a but u s ing  uniformly spaced c o l l o c a t i o n  

p o i n t s .  Now M = 2, 4 ,  8,  16, and 32.  The L2 e r r o r  i s  t h e  

same Chebyshev norm as i n  F igure  5a. 
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Figure  6 .  Same as Figure  5a f o r  the function f(x) = tanh(q(x - xu>>,  

Q =  , M = 1,...,5. 
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Figure 7a. Chebyshev collocation using 31 nodes for the function given 

in (4.1). 
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Figure 7b. Same as Figure 7a but using uniformly spaced nodes and M = 

2 ,  4 ,  8 ,  1 6 ,  32. 
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Figure 8a. Chebyshev c o l l o c a t i o n  f o r  

M = 0 , .  ..,5, us ing  30 nodes. We l e t  xo vary  between 0 

and 1. 

f ( x )  = sgn(x  - xo)  Ix - xolM,  
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Figure  8b. Same as Figure  8a but using uniformly spaced c o l l o c a t i o n  

nodes but  Chebyshev norm. 
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nodes and ( d o t t e d  l i n e )  uniformly spaced nodes, both us ing  31 

c o l l o c a t i o n  po in t s .  
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Figure loa. Pseudospeci r a t  approximation to (4.1) with f(x) = sinnx. 

A four-stage fourth-order Runge-Kutta formula is used and 

boundary conditions are imposed after every stage. Each 

graph represents a different time step, i.e., CFL number with 

an increase of fi between graphs. The L2 error at t = 

1 is given as a .function of N. 
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Figure lob. Pseudospectral approximation to (4.1) with 

f(x) = simx. 

formula is used but with the boundary condition imposed only 

once after the completion of the four Runge-Kutta stages. 

A four-stage fourth-order Runge-Kutta 



-60- 

l E  1 o * *  

O I E  1 o * *  

r 10.. - 8  

I I I I I I I I I  
C 2 4 6 8 10  1 2  14  1 6  1 8  2 0  2 2  24 26 2 8  3 0  3 2  10.- - 9  I I ' I ' ' I ' I ' I I I I I ' ' I I ' 

N 

Figure lla. Pseudospectral Chebyshev approximation to (4.1) with 

f(x) = sinnx, 4 applications of the boundary conditions 

and B = 2, i.e., mesh is twice as coarse as a Chebyshev 

grid near the boundary. Each graph represents a different 

CFL number, increasing by a factor of 43. 
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Figure llb. Pseudospectral Chebyshev approximation to (4.1) with 

f(x) = sinnx, 4 applications of the boundary conditons 

i.e., twice the density of Chebyshev spacing 1 and 6 = - 
2 '  

near the boundary. Each graph represents a different CFL 

number, increasing by a factor of 47. 
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Figure 12. Same as Figure  10a but  w i th  uniformly spaced nodes. Based 

on double  p r e c i s i o n  on the CRAY-XMP. 
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Figure 14. Pseudospectral Chebyshev approximation to the solution of a 

Poisson equation. The exact solution is u(x,y) = sinny 

tanh(m(x - xg)) with M = 4, 16, 64, 256, 1024 and N = 

17 modes in each direction. We plot the L2 Chebyshev 

error as a function of xo. 
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